Better Together: Quantifying the Benefits of the Smart Network


Joe Weinman


Abstract

Three approaches to load balancing in a distributed computing network are evaluated analytically using statistics and via Monte Carlo simulation: 1) random selection; 2) selection based solely on identifying the server with the lowest response time; 3) selection based on identification of a combination of path and server with the lowest total response time. Analytical and simulation results show that the lowest expected response times occur via joint optimization. The exact improvement depends on the underlying distributions of path response times and server response times. An exemplary case where each path and server is an independent, identically distributed random variable with a continuous uniform distribution on \([0,1]\) is assessed; then the improvement may be approximated by \(1/2 + 1/(n + 1) - \sqrt{n/2n}\), where \(n\) is the number of alternative combinations of path and server. Generally, when \(P\) is a random variable representing path response times, the value of a smart network in reducing response time is \(\mu(P) - \min(P)\) as \(n \to \infty\). Such improvements support a philosophy of “smart” networks vs. “dumb pipes.”

1. Introduction

In the late ‘90s, the world underwent a tectonic shift from circuit-switched POTS (Plain Old Telephone Service) to everything over the Internet, as David Isenberg presciently foretold in “The Rise of the Stupid Network\(^1\)”. However, as I argued recently\(^2\), it isn’t clear any longer that “dumb pipes” and “stupid networks” are the most performant architecture for distributed computing; better results can be achieved for certain applications via global optimization across endpoints and networks. As we will show, “intelligent networks,” —at least smart enough to provide status on congestion or response time and quickly control the path that flows should take—can offer quantifiably superior performance that is formally provable. Reduced response time generates business value, through, e.g., greater revenue, reduced churn, and enhanced labor productivity\(^3\). Such networks occur in a variety of campus and wide

\(^1\) Joe Weinman leads Cloud Services and Strategy for Telx. The views expressed herein are his own. Contact information is at http://www.joeweinman.com/contact.htm.
Better Together: Quantifying the Benefits of the Smart Network

area network contexts, such as software-defined networks and OpenFlow\textsuperscript{4}, but can even occur locally, such as in the use of multi-path I/O, e.g., a switched fabric such as InfiniBand\textsuperscript{5}. The general problem is broader than computing, as in the selection of a particular coffee shop from among many based on the wait for baristas \textit{and} rush hour highway traffic. Abstractly, the problem is even broader than merely response time, as in the selection of the least expensive vacation based both on airfare (transport network) costs and hotel (on demand utility service) costs.

One key networked computing application is “anycasting,” where a client can be served from any of several nodes. An example might be a search query, where the search index and query servers are replicated in multiple geographic regions. Another might be eCommerce, where a product catalog page can be delivered from anywhere, and a purchase transaction can be concluded anywhere. Yet another example might be content delivery, where a given song or movie can be streamed from any of several locations.

There are a number of approaches to selecting such a node, including random selection or round robin approaches, which are intended to have the effect of load balancing, to load balancing based on server load or recent response times, where a site is selected based on an expectation that it is in the best position to take on additional work. However, an experimental system called “Aster*x” (formerly “Plug-n-Serve\textsuperscript{6}”) run at Stanford University by Nikhil Handigol, Nick McKeown, and their colleagues offers tantalizing evidence\textsuperscript{7} that considering \textit{both} network response times—which vary based on everything from propagation delays to congestion in packet-switched networks—\textit{together} with server response times can offer the best performance. Moreover, Handigol points out\textsuperscript{8} that today’s reality is very different: A CDN provider is likely to pick a node based on load, whereas an ISP is likely to pick a path based on network congestion; the decisions are disjoint, and thus the performance is suboptimal.

We’ll quantify this and examine simulation results below, but for a preview, let’s briefly consider a simple formulation. Let round-trip latencies on \( n \) paths have distributions \( P_1, P_2, \ldots, P_n \), where each \( P_i \) is an independent, identically distributed continuous random variable with \( \min_P = \min(P_1) = \min(P_2) = \ldots = \min(P_n) = \mu_P = \mu(P_1) = \mu(P_2) = \ldots = \mu(P_n) \), and similarly let response times for \( n \) servers be characterized by independent, identically distributed continuous random variables \( S_1, S_2, \ldots, S_n \), where \( \min_S = \min(S_1) = \min(S_2) = \ldots = \min(S_n) = \mu_S = \mu(S_1) = \mu(S_2) = \ldots = \mu(S_n) \), and let response times of various combinations of paths and servers follow \( R_i = P_i + S_i \). Then an algorithm that selects combinations at random will have an expected response time of \( \mu_P + \mu_S \) since the mean of the sum is the sum of the means. One based on server-only selection without considering the path, i.e., a “stupid network” approach, will have an expected value of \( \mu_P + E(S_{(1)}) \), where \( S_{(1)} \) is the first order statistic, i.e., minimum, of a set of samples \( \{S_1, S_2, \ldots, S_n\} \). As \( n \) approaches \( \infty \), the \( E(S_{(1)}) \) \textit{term} approaches \( \min_S \), thus the \textit{total} response time will never be better than \( \mu_P + \min_S \). However, an algorithm which performs joint optimization has an expected total response time of \( E(R_{(1)}) \). With such a “smart network” approach, as \( n \to \infty \), the expected total response time approaches \( \min_P + \min_S \). Except for the trivial case of one server on one path where \( n = 1 \), the “smart network” approach \textit{always} provides better performance than the “stupid” one, and in the general case, the improvement is \( \mu_P - \min_P \) in the limit as \( n \to \infty \). Monte Carlo simulation results support the analysis.
2. A Simple Analogy

To understand qualitatively why joint optimization is better than server-only selection, let’s consider a simple game of cards, where the lowest total face value for a pair of cards wins. Faced with the deal shown in Figure 1, and with no additional information, the wisest course of action would be to pick the pair that includes the six of diamonds, given that the expected value of each of the unseen cards is identical and thus that choice offers the best odds of winning.

As it happens, however, if we could see the other cards, we would come to realize that the rightmost pair is not the best selection. In fact, as can be seen in Figure 2, the six of diamonds is paired with the ten of spades, making it the worst selection, with a total of 16, as opposed to the winning choice of the pair comprising the eight of clubs and the three of hearts, with a winning low score of 11.
This card game is a metaphor for a distributed computing scenario, such as cloud computing or content delivery. In the playing card example we are choosing a pair of cards, in the computing scenario we need to choose a pair comprising a server and the path to that server, as shown in Figure 3. The path may include one or more local area, metropolitan area, or wide area networks. The server is an abstraction for a web server, database server, file server, etc., or combination of these and other elements such as firewalls. The choices now have different values, but instead of face values, they are now response times. We will consider network response time to be round trip latency.
Figure 3: A Distributed Computing Scenario with 4 Options

To relate this distributed computing example back to the playing card context, we can refer to Figure 4, which shows us trying to make a decision of which combination of path and server to select based only on the server data with no visibility into the network performance. As might be expected, the best choice can only be made when we have complete information, as in Figure 5.
Better Together: Quantifying the Benefits of the Smart Network

**Figure 4: Global Load Balancing Selection with Partial Information**

**Figure 5: Global Load Balancing Selection with Complete Information**
We could refer to only server data to do load balancing, but we can make a wiser decision when we use both server and network data.

While more information in these examples led to a better solution, one might ask how much better the solution is, and whether more options increases the quality of the solution. In other words, we can do better both by turning the face down card face up, and by having more pairs of cards or servers and paths to choose from.

3. Quantifying the Benefits of the Smart Network

In the Stanford experiments based on OpenFlow conducted by Handigol, McKeown, and their colleagues, there was a dramatic improvement in moving from an approach based on server load to one based on network congestion, as shown in the following chart:

![Figure 6: Response Times based on Server Selection (Red) vs. Path Selection (Green)](source: Nick McKeown, YouTube, “How SDN Will Shape Networking”)

Beyond this specific experiment, run on the GENI testbed, we can abstract both the playing card and distributed computing model to arrive at some provable results, validated by Monte Carlo simulation.

Assume that there are $n$ server-path combinations. To keep things simple, let the response times for each of the $n$ servers and each of the $n$ paths be uniformly distributed on the interval $[0,1]$. The random variables representing response times for the servers are $S_1, S_2, ..., S_n$, and the random variables representing the response times for the paths are $P_1, P_2, ..., P_n$. The total response time for any given combination of server $i$ with path $i$ will be denoted by $R_i$, where $R_i = P_i + S_i$, $1 \leq i \leq n$. 

© 2013 Joe Weinman. All Rights Reserved.
We can now evaluate three different algorithms for servicing a given user request.

**Random Selection.** If a combination of network path and server is selected at random, the expected value of \( R \) is \( E(R) = 1 \). This is because \( E(R) = E(P + S) = E(P) + E(S) = .5 + .5 = 1 \), since the expected value of a uniformly distributed random variable—either \( P \) or \( S \)—on \([0,1]\) is .5.

**Server-Based Selection.** The case of server-based selection is like the selection of a pair of playing cards without seeing the value of the card that is face down. The expected value of the path, \( E(P) = .5 \). However, the expected value of the response time of the best server is a little bit trickier. If we only have one server it is .5, but we may have several to choose from. The more servers we have to choose from, the more likely it is that there will be a lower and lower value. In fact, it turns out that in this exact case, based on the theory of order statistics, \( E(S_{(1)}^n) = E(\min\{S_1, S_2, \ldots, S_n\}) = \frac{1}{n+1} \). Consequently, the expected value of \( R \) is

\[
E(R) = E(P) + E(S_{(1)}^n) = \frac{1}{2} + \frac{1}{n+1} = \frac{n + 3}{2n + 2}.
\]

**Joint Optimization.** Suppose we try to optimize jointly based on the selecting one of the pairs. The distribution of response times across both server and path may be characterized as a new random variable \( T \) which “encodes” the total of both \( P \) and \( S \), i.e., \( T = P + S \). The sum of two independent uniformly distributed random variables on \([0,1]\) is a random variable on \([0,2]\) that has a symmetric triangular distribution. Using the formula derived by H. N. Nagaraja, a professor of Statistics, Biostatistics, and Medicine and chair of the Division of Biostatistics at Ohio State University, and co-author of the book *Order Statistics*, but doubling the expected value for the min of a triangular distribution on \([0,1]\), to arrive at one for a symmetric triangular distribution on \([0,2]\), we know that

\[
E(\min\{T_1, T_2, \ldots, T_n\}) = n \sum_{j=0}^{n-1} \binom{n-1}{j} \frac{(-1)^j}{2j(2j + 3)} + n2^{n+2} \sum_{j=0}^{2n-1} \binom{2n-1}{j} \frac{(-1)^j}{(j + 2)(2j + 3)} \left(1 - \frac{1}{2}j^2\right)
\]

Fortunately, this rather complex formula has been shown by Nagaraja to be approximately equal to \( \sqrt{\pi/2n} \) (after doubling the formula he provides for a triangular distribution on \([0,1]\)).

### 4. Simulation Results

Simulation results bear this out. A Monte Carlo simulation, shown in Figure 7, was written in Javascript to quantify the difference between a random algorithm, a server-only-based algorithm, and a joint optimization algorithm, as the number of choices increases from 1 to 20.
As can be seen, the fastest total does not necessarily use the fastest path nor fastest server. The data below (where 100 represents 1.0) are from 20 experiments (simulation runs), each of 10,000 trials.
5. Observations

What do the simulation runs and the abstract analysis tell us?

1) When there is only one combination, there is no difference between the three strategies.

2) When there are two or more combinations to choose from, we can do better than random.

3) Except for the trivial case of only one combination, where there is no difference, the joint optimization strategy is always better than the server-only strategy.

4) The server-only strategy flat-lines at the expected value of a randomly selected path.

5) The joint optimization strategy can go as low as we might desire...with an infinite number of options, the expected value of the total response time is 0. Extrapolating the simulation results shows this as well as considering the value of $\sqrt{\pi/2n}$ as $n \to \infty$.

6) Even with only a handful of options, there are substantial benefits to be gained from any kind of optimization, but the joint optimization strategy is significantly better than merely making decisions based on server loads.

6. Caveats

There are a few assumptions that are worth surfacing, lest too-broad conclusions be drawn.

1) One assumption is that server loads are independent of each other and independent of path loads. To the extent that each given server only has one path to it and transactions have similar characteristics, each server load and response time will be highly correlated with its corresponding path load and response time. In today’s multi-carrier, multi-application environment and mesh Internet architecture, they are likely to be independent, however.

2) Another assumption is that server response times and path response times are on par with one another. To the extent that the server response times are much greater than path response times, the network becomes insignificant. With today’s wide area cloud and ecommerce transactions, however, it is not unusual to find both on the order of, say, 30 to 50 milliseconds, and so this assumption is not unrealistic. In fact, one may find the reverse is true, where embarrassingly parallel activities for, say, serving search queries have reduced the server-side response time to such a low level that geographic dispersion to multiple service nodes is required to bring the network latencies back into rough parity. Even then, network latencies
may be an order of magnitude or two greater than server response times, say, for keystroke processing for progressive search.

3) We have assumed uniform distributions. The general logic still holds with different distributions, although, to the extent that, say, response times are normally distributed with extremely small standard deviations, response times would in effect be close to constant, obviating the need for any such optimization.

4) We have assumed uniform distributions on [0,1]. To the extent that the range and thus standard deviation are small relative to the minimum (i.e., a low coefficient of variation), such optimization becomes irrelevant. For example, if the range were [100,101], optimization would achieve a less than 1% difference. The general form of S and P are on the interval $[a, b]$, with $a > 0$. In fact, even if uniformly distributed, each path and server might have a different lower and upper bound, i.e., $P_1 = U(a_{P_1}, b_{P_1}), P_2 = U(a_{P_2}, b_{P_2})$, and so on. If, say, $\forall i, i > 1, a_{P_i} > b_{P_1}$, our algorithms don’t need to be very smart to determine that Path 1 is always best.

5) Decision cycle times are also important and short-term stability is important. The assumption is that a selection of a path and server combination can be made quickly enough after measurement of path and server response times to select the best combination. If by the time a user transaction is routed to a selected combination the congestion or load of each element has changed, we are for all intents and purposes making a random selection, not an intentional optimizing one. Moreover, we are assuming that the problem is computationally tractable at scale, and that “microflows” based on connections between particular clients and servers can be maintained for the duration of a session and that deployment of rules defining selected options can be successfully transitioned. Fortunately, Richard Wang, Dana Butnariu, and Jennifer Rexford of Princeton University have shown that there are feasible algorithms for “partitioning” and “transitioning” such traffic in suitable time frames.

6) We also have implicitly assumed that the selection of path does not create a “tragedy of the commons” type of aggregate behavior. If enough user traffic was routed to the best-performing route to make it the worst-performing route, results could be worse than if a route was selected at random. The general notion of a software-defined network with logically centralized control should prevent this.

Despite these caveats, however, results from the Stanford University study deployed on a real-world test bed showed dramatic improvement by moving to a path-based approach from a server-based approach, so the results would appear to have validity.
7. Conclusion

This analysis shows that subject to the assumptions, optimization decisions made by considering both network and server behavior, with such routing applied to the network through various emerging techniques such as Network as a Service, or Software Defined Networks such as OpenFlow, can improve the end-user experience and/or performance of distributed applications. As the number of options approaches infinity, a random selection remains mired at a response time of $E(P) + E(S)$; a server-only-based algorithm can never do better than $E(P) + \min(S)$; and a joint optimization solution approaches a response time of $E(\min\{R_1, R_2, \ldots, R_n\})$, which is $\min(P) + \min(S)$. We have focused on the simplest case to analyze, where all random variables are uniformly distributed on $[0,1]$, but subject to the caveats, it should be apparent that the conclusions are broadly applicable and a consequence of the fundamentals of order statistics, rather than any domain-specific characteristic. This suggests that smart networks can offer better performance than “stupid” ones, in turn generating business value.

8. Acknowledgment

I cannot thank H. N. Nagaraja (http://www.stat.osu.edu/~hnn/) enough for his extremely responsive and thoughtful replies to a request arriving out of the blue to characterize the order statistics for the triangular distribution, a surprisingly complex problem as can be surmised by Section 3.

9. References

14 Joe Weinman, [http://www.complexmodels.com/SmartNetwork.htm](http://www.complexmodels.com/SmartNetwork.htm).